
Supervisor: Mikołaj Badura 1 | P a g e

Faculty of Microsystem Electronics and Photonics

Operating systems

Lab. 3.

I. Issues to prepare

 Pipes, processes in Linux

 FIFO, named pipes

II. Outline

1. Pipes implementation in C

2. Named pipes

3. Tasks

Operating systems Lab. 2

Supervisor: Mikołaj Badura 2 | P a g e

III. Tasks

1. Start Linux on virtual machine. Log in and run terminal.

2. Check how Linux pipes work:

Pipes can be used by key “|”. Example:

Example analysis:

- command “ls –l” lists content of the current folder,

- command “tail –n X” shows only last X lines of standard input,

- command “grep fif” shows only lines containing “fif” phrase.

By using “|” output of ls –l command is redirected as input to tail or grep.

3. Check out how pipes can be used in C language:

Operating systems Lab. 2

Supervisor: Mikołaj Badura 3 | P a g e

4. How the fork() function works like?

5. Create named pipe FIFO:

6. Show FIFO content by basic cat command, may be in another terminal:

7. How to use FIFO in C:

int fd[2];

int main() {

 printf("Main process, getpid=%d\n", getpid());

 pipe(fd);

 pid_t pid = fork();

 if(pid == 0) {

 char *msg = "The message from child to parent\n";

 printf("I am child, getpid=%d.\n", getpid());

 close(fd[0]); //close ‘read’ descriptor

 write(fd[1], msg, strlen(msg)+1);

 } else {

 printf("A am parent, getpid=%d.\n", getpid());

 close(fd[1]); //close ‘write’ descriptor

 char msg[100];

 read(fd[0], msg, sizeof(msg));

 printf(msg);

 }

 return 0;

}

mkfifo /somewhere/abc ; ls -l /somewhere/abc

prw------- 1 root root 0 2006-04-03 07:45 abc

cat /somewhere/abc

test fifo 0

test fifo 1

test fifo 2

int fd, i=0; char buf[32];

int main() {

 fd = open("/somewhere/abc", O_WRONLY);

 for(;;) {

 sprintf(buf, "test fifo %d\n", i++);

 write(fd, buf, strlen(buf));

 sleep(1);

 }

 return 0;

}

Operating systems Lab. 2

Supervisor: Mikołaj Badura 4 | P a g e

Useful bash commands:

./program.o & - runs program in the background

ctrl+z - stops running present program

bg - wakes up stopped process, let in run in the background

fg - return process to foreground

ps - lists running processes

crtl+c - kills present process

kill PID - kills process no. PID

killall processname - kills process with processname name

Tasks:

1. Write down a code using the fork() function. Compile and execute the code. Observe

the process list (with the ps -A command) before and after forking the base process.

2. Modify the above code so the process forks many times. What are the limists for the

Linux system?

3. Use the pipes (fd-0, fd-1) for communication between parent and child processes. Use

the pipe(), dup(), dup2() functions.

4. Create a FIFO file named /tmp/fifo.

5. Write down a code which forks few times and each copy writes a data to the fifo.

Process ‘A’ should write „AAAAA…”, process ‘B’ „BBBBBB…” respectively and so on,

with configurable length of the block written to the fifo.

Operating systems Lab. 2

Supervisor: Mikołaj Badura 5 | P a g e

6. With the ‘cat /tmp/fifo’ read and display the data from fifo. What is the limit of a data

before data mixing from various processes occurs?

7. How the process memory is allocated after forking? Fork the process c.a. 10 times.

Examine the behavior of the memory usage for process using const char[], char[],

malloc() variables.

